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Coherent structures in wave boundary layers.
Part 2. Solitary motion
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This study continues the investigation of wave boundary layers reported by
Carstensen, Sumer & Fredsøe (J. Fluid Mech., 2010, part 1 of this paper). The
present paper summarizes the results of an experimental investigation of turbulent
solitary wave boundary layers, simulated by solitary motion in an oscillating water
tunnel. Two kinds of measurements were made: bed shear stress measurements and
velocity measurements. The experiments show that the solitary-motion boundary
layer experiences three kinds of flow regimes as the Reynolds number is increased:
(i) laminar regime; (ii) laminar regime where the boundary-layer flow experiences a
regular array of vortex tubes near the bed over a short period of time during the
deceleration stage; and (iii) transitional regime characterized with turbulent spots,
revealed by single/multiple, or, sometimes, quite dense spikes in the bed shear stress
traces. Supplementary synchronized flow visualization tests confirmed the presence
of the previously mentioned flow features. Information related to flow resistance are
also given in the paper.

1. Introduction
Although much research has been carried out on boundary layers under harmonic

progressive waves (see Carstensen, Sumer & Fredsøe 2010, part 1 of this paper, for an
extensive review), to the authors’ knowledge, Liu, Park & Cowen (2007) were the first
to study boundary-layer flows under solitary waves in details. They derived analytical
solutions, based on (i) those of Liu & Orfilla (2004) for viscous boundary-layer flows
under transient long waves, and (ii) the solutions for the nonlinear boundary-layer
equations. They also carried out laboratory measurements that include the free-
surface displacement, particle image velocimetry (PIV)-resolved velocity fields of the
boundary layer and the bottom shear stress. Liu et al. (2007) gave a detailed account
of the existing work on the subject prior to their study, notably Keulegan (1948) and
Mei (1983). Tanaka, Sumer & Lodahl (1998), in their work on laminar boundary
layers under cnoidal waves, derived equations for the time variations of the velocity
and the bottom shear stress for solitary waves (which they viewed as the asymptotic
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case of cnoidal waves as the Ursell parameter goes to infinity), using Keulegan’s
(1948) analytical solution.

Regarding turbulent solitary-wave boundary-layer flows, in an earlier study, Liu
(2006) developed analytical solutions to the wave damping due to a turbulent
boundary layer. In a recent study, Vittori & Blondeaux (2008a and 2008b) presented
the results of an investigation in which turbulent boundary layer under a solitary wave
was studied by direct numerical simulations (DNSs). The latter study is discussed in
detail in this paper.

In part 1 of this paper, wave boundary layer over a smooth bed was studied
under oscillatory motion. The focus was on the transitional regimes of the oscillatory
boundary-layer flows. This study extends the work described in part 1 to solitary
wave boundary layers. To this end, the solitary wave boundary-layer flow is simulated
in the laboratory in an oscillating water tunnel. With this, the wave-induced velocities
can be increased quite substantially, up to 1.2 m s−1 in the present facility, resulting
in Re numbers up to 2 × 106, the Reynolds numbers that cannot be achieved in
ordinary, small- or medium-scale wave-flume facilities. (Here Re is defined, based on
(i) the maximum value of the free-stream velocity outside the boundary layer, and
(ii) the half of the stroke of the water particle displacement in the free-stream region
under the solitary wave; (7).) It turns out that the boundary-layer flow experiences
tremendous changes (laminar, laminar with vortex tubes near the bed, laminar-to-
turbulence transition, and turbulence), as Re is increased from laminar- to turbulent-
regime Reynolds numbers. (Some early results of this study have been presented at
the 18th ISOPE Conference; Sumer et al. 2008.)

2. Experimental facility
2.1. The oscillating water tunnel and instrumentation

The experiments were carried out in the same U-shaped oscillating water tunnel as
in part 1 (figure 1 in part 1). The solitary motion in the tunnel was driven by the
same electronically controlled pneumatic system. The piston of the pneumatic system
in the present experiments was driven such that the free-stream velocity in the tunnel
satisfied

U0 = U0msech2(ωt), (1)

the variation of the particle velocity at the bed at a given location under a small-
amplitude solitary wave. Here ω is the angular frequency

ω =
2π

T
, (2)

(where the quantity T can be interpreted as the period of the motion, a time scale
that characterizes the width of the velocity time series; figure 1a). In the tests, the
piston was moved in the direction of the open riser (figure 1 in part 1), and stopped
at the instant when the water reached the top of the open riser. Figure 2 displays a
time series of the measured free-stream velocity (time series 2). The portion of the
data with negative velocities at the trailing end of U0(t) (i.e. time series 2 beyond the
cutoff phase in figure 2) was disregarded in the data analysis, tcutoff corresponding to
ωtcutoff � 100◦, or slightly larger (cf. figure 1).

The measurements were made at the same section as that in part 1 (figure 1 of
part 1). Two kinds of measurements were performed: bed shear stress measurements
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Figure 1. (a) Variation of the free-stream velocity and (b) the water particle displacement in
the free-stream region in a solitary motion.
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Figure 2. Free-stream velocity. (1) Equation (1) and (2) measured time series in the
experiment.

and velocity measurements. The bed shear stress was measured, using the same hot-
film probe as in part 1. The streamwise velocity was measured with a laser doppler
anemometer (LDA), used in the forward scatter mode. The LDA was a Dantec model
60 × 11 fibre optic head equipped with a 430 mW argon laser, a Dantec 55N12
frequency shifter and a Dantec 55N20 frequency tracker. The dimensions of the
measuring volume were (dx × dy × dz) = 0.66 mm × 0.078 mm × 0.078 mm.

Two velocity measurements were made with the LDA: (i) Velocity measurements at
y = 0.4 mm just above the hot-film probe, to ‘monitor’ the direction of the bed shear
stress, as the hot-film probe does not sense the direction. The experiments showed
that the velocity at the measurement point (y = 0.4 mm from the bed) lagged behind
the bed shear stress about 10◦ under laminar conditions (in agreement with the
laminar theory; Liu et al. 2007), while practically no phase difference was observed
between the two signals (the velocity and the bed shear stress signals) under turbulent
conditions. (ii) Velocity measurements at several y locations from the bed (at the
centre of the flume width) with the purpose of determining the mean and turbulence
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characteristics of the motion as a function of the distance from the bed (tests 3, 9
and 14 in table 1).

A program was written in MatLab, using the Data Acquisition Toolbox, which
included functions such as controlling/driving the pneumatic system and sampling
bed shear stress and velocity data. This was different from the way in which the
pneumatic system was controlled and the data were sampled in part 1. In the present
system, as the controlling of the pneumatic system and the sampling of data were
achieved through the same software, there was no need to sample a reference signal.
Rather the piston motion, generated by the software, acted as the reference signal in
the data processing.

Mean values of the quantities (the bed shear stress or the velocity) are calculated
through ensemble averaging according to

φ(ωt) =
1

N

N∑
j=1

[φ(ωt)]j (3)

in which [φ(ωt)]j is the time series of φ obtained in run j , and N is the total number
of runs (i.e. the sample size). The root-mean-square (r.m.s.) value of the fluctuating
component of the quantity in question, φ′ = φ − φ, is calculated by

(φ′2)1/2(ωt) =

{
1

N − 1

N∑
j=1

{
[φ(ωt)]j − φ(ωt)

}2

}1/2

(4)

2.2. Flow visualization

Although the main focus of this study was the statistical properties of the
hydrodynamic quantities such as the bed shear stress and the streamwise velocity,
some limited number of flow visualization experiments were made to complement
the bed shear stress and velocity measurements. Similar to part 1, two types of flow
visualizations were carried out: (i) plan-view flow visualization, and (ii) side-view
flow visualization. The methods used in these experiments were exactly the same as
in part 1. The flow visualizations were made synchronized with the bed shear stress
measurements. Details regarding the flow visualization technique, the synchronization
and the equipment are described in part 1.

3. Test conditions
Table 1 summarizes the test conditions. The quantities T and U0m in table 1 are

the period and the maximum value of the free-stream velocity, respectively ( (1)
and (2)). The procedure to obtain these quantities was as follows. (i) Switch on the
solitary motion from rest; (ii) Sample the free-stream velocity U0(t); (iii) Fit (1) to the
measured velocity time series U0(t); and (iv) From this, obtain U0m and ω; and from
(2), get T .

The quantity a in table 1 is half of the stroke of the water particle displacement in
the free-stream region

x = a tanh(ωt) (5)

(figure 1b), and found from

a =
U0m

ω
(6)
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Test Period, of velocity, U0m Half-stroke, δ1 = (2ν/ω)1/2 Sample size (number of
no. T (s) (m s−1) a (m) Re = aU0m/ν (cm) Quantity measured realizations), N

1 7.0 0.14 0.20 2.8 × 104 0.15 τ0, U0 5
2 8.4 0.21 0.28 5.9 × 104 0.16 τ0, U0 5
3 8.2 0.22 0.28 7.1 × 104 0.16 u(y) (accompanied 5 at each measured

by τ0 measured) point
4 8.8 0.25 0.38 9.4 × 104 0.17 τ0, U0 2
5 9.2 0.36 0.55 2.0 × 105 0.17 τ0, U0 30
6 9.3 0.41 0.65 2.7 × 105 0.17 τ0, U0 21
7 8.9 0.45 0.68 3.1 × 105 0.17 τ0, U0 31
8 9.4 0.53 0.83 4.4 × 105 0.17 τ0, U0 30
9 9.0 0.56 0.77 4.8 × 105 0.17 u(y) (accompanied 15 at each measured

by τ0 measured) point
10 9.3 0.64 1.02 6.5 × 105 0.17 τ0, U0 30
11 8.8 0.82 1.29 1.1 × 106 0.17 τ0, U0 30
12 8.3 0.96 1.38 1.3 × 106 0.16 τ0, U0 30
13 8.7 1.03 1.54 1.6 × 106 0.17 τ0, U0 30
14 7.8 1.20 1.50 1.8 × 106 0.16 u(y) (accompanied 15 at each measured

by τ0 measured) point
15 7.9 1.19 1.64 2.0 × 106 0.16 τ 0, U0 30

Table 1. Test conditions. Water temperature was 20◦C. Kinematic viscosity was 1.0 × 10−2 cm2 s−1.
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Figure 3. Sensitivity to the number of waves. (a) Mean and (b) standard deviation of the
bed shear stress. ωt = 64.4◦ (where the turbulence is largest). Re = 1.1 × 106.

Re in table 1 is the Reynolds number defined by

Re =
aU0m

ν
(7)

similar to the oscillatory flow case. As seen from the table, the maximum Re number
tested in the experiments is 2 × 106. Reynolds numbers larger than this value could
not be achieved due to the limited stroke length of the piston of the pneumatic system
(figure 1, part 1). The quantity δ1 in table 1 is the Stokes length defined by

δ1 =

√
2ν

ω
, (8)

similar to the case of oscillatory boundary layers.
The sampling interval in the measurements was 4.17 ms. This corresponds to

approximately 1900–2250 samples over the period of the motion (tests 1–15, table 1),
and is large enough to be able to trace time development of the measured statistical
quantities.

The number of runs, N, conducted for the bed shear stress measurements was 5 for
tests 1 and 2, and 2 for test 4 in the laminar-regime experiments (table 1, last column).
N was larger in tests 1 and 2 than that in test 4, to check the reproducibility of the
results. Regarding the non-laminar-regime tests, a sensitivity analysis was carried out
to determine the number of runs to get reliable ensemble averages. This analysis
showed that the statistics (the mean value and the standard deviation) of the bed
shear stress converged when N � 15 for Re = 4.4 × 105, N � 15 for Re = 1.1 × 106 and
N � 25 when Re = 2 × 106. Therefore N was, for the most part, chosen as 30 for the
non-laminar-regime experiments (tests 5–8, 10–13 and 15, last column in table 1).
Figure 3 depicts an example of the sensitivity analysis where the mean and the
standard deviation of the bed shear stress are plotted as a function of the sample size
for ωt = 64.4◦, the phase where the turbulence is largest.

Regarding the velocity-profile measurements, these measurements were carried out
at 20 points across the depth covering the half-height of the tunnel. In order to
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Figure 4. Sensitivity to the number of waves. (a) Mean and (b) standard deviation of the
streamwise velocity. ωt = 30◦ (where the turbulence is largest). Re = 1.8 × 106 and y = 0.6 mm
(y+ = 22.7).

check the convergence of the statistics, a sensitivity analysis was carried out for
Re =1.8 × 106 (the highest Re for the velocity measurements) at the phase value
ωt = 30◦, the phase value where the turbulence is largest. This analysis showed that
the statistics converged when N � 15. Therefore, N =15 runs were conducted for each
Reynolds number in the non-laminar-regime experiments (tests 9 and 14, table 1).
For the laminar-regime experiments N was chosen as 5 (test 3, table 1). With regard
to the turbulent-regime experiments, the number of runs was kept at the minimum
required for the convergence, N =15, a relatively low value compared with the bed
shear stress measurements. This was essentially a ‘trade-off’, considering the very
high number of velocity measurements (15 measurements at each measurement point
involving 20 measurement points across the depth). Figure 4 gives an example of
the sensitivity analysis carried out for the velocity for ωt =30◦, the phase where the
turbulence is largest, similar to figure 3. The data in figure 4 are for the measurement
point y =0.6 mm (y+ = 22.7).

4. Bed shear stress
4.1. Flow regimes

The boundary-layer flow developing over a smooth bed of a solitary motion in
the half-space y > 0 is described by a single parameter, the Reynolds number, (7),
similar to oscillatory boundary layers. The boundary-layer flow undergoes tremendous
changes as the Reynolds number is increased. The flow regimes experienced with
increasing Reynolds number is summarized in figure 5 with reference to sampled bed
shear stress traces. In the figures, τ0 is the bed shear stress and ρ the water density.

(We note that, in the case of a solitary-motion boundary layer developing in a
finite-depth flow environment rather than the half-space y > 0, the boundary layer
is described by two parameters, namely the Reynolds number and the boundary-
layer-thickness-to-depth ratio. Vittori & Blondeaux (2008b) chose the following set
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available as this regime could not
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Figure 5. Flow regimes with reference to sample time series of the bed shear stress. Sample
time series for (a) Re = 9.4 × 104, (b) Re = 3.1 × 105, (c) Re = 2.0 × 106.

of parameters for real solitary wave boundary layers, H/h and δV B/h, in which h

is the water depth, H the wave height, δV B the boundary-layer thickness defined by

δV B =
√

(2νh)/(
√

gh). Vittori & Blondeaux’s set of parameters can be converted to
the previously mentioned set of parameters, as has been done in the present study in
conjunction with the transition to turbulence; § 4.4.)
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Figure 6. Comparison between the experimentally obtained time series of the bed shear
stress and the laminar solution of Liu et al. (2007). Test 4 (table 1, Re = 9.4 × 104).

For Re numbers up to 2 × 105, the flow is laminar (figure 5a); no sign of turbulence
is observed in the bed shear stress signal. When Re is increased further, typically
a strong decrease in magnitude (A, figure 5b), followed by a strong increase (B),
emerges in the bed shear stress signal; this flow regime falls into the Reynolds number
range 2 × 105 � Re < 5 × 105. As demonstrated below, this behaviour is related to the
emergence of quasi-two-dimensional vortex tubes, the coherent flow feature studied
in detail in part 1. With a further increase in the Reynolds number, for Re larger
than 5 × 105 up to Re =2 × 106 (the highest Reynolds number achieved in the present
experiments), the bed shear stress experiences single or multiple or sometimes quite
dense spikes, produced by the passage of turbulent spots over the measuring point
(figure 5c), first emerging towards the end of the flow period, and gradually spreading
to earlier phase of the motion with increasing Re, in the same way as in the oscillatory
motion (c.f. part 1). This regime corresponds to the transitional flow regime.

For even further increase in the Reynolds number (Re > 2 × 106), the previously
described spikes are expected to spread over practically the entire phase space,
and with this, the flow is expected to become fully developed turbulent, similar
(qualitatively) to the case of oscillatory boundary layers (Jensen, Sumer & Fredsøe
1989; Lodahl, Sumer & Fredsøe 1998; and part 1 of this study). Further discussion
on this aspect of the problem is given in § 4.4.

4.2. Laminar regime (Re < 2 × 105)

Figure 6 shows the time series of the measured bed shear stress in test 4 (table 1,
Re =9.4 × 104), plotted together with the laminar solution of Liu et al. (2007). The
figure shows that the agreement is good although the measured bed shear stress
deviates from the analytical solution for the phase values ωt <O(−100◦). This is not
entirely unexpected, considering the discrepancy between the experimentally generated
velocity and the theoretical expression of the solitary motion observed in figure 2
during the initial stage of the motion. (We note that Liu et al. (2007) in their laminar
boundary-layer experiments in a wave flume also obtained a good agreement between
their prediction and their bed-shear stress measurements.)

As seen, the bed shear stress leads over the free-stream velocity (in agreement
with the oscillatory boundary-layer flows; see e.g. Fredsøe & Deigaard 1992), and
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5 cm

Figure 7. A video frame illustrating the vortex tubes in plan view at ωt = 93◦.
U0m = 50.9 cm s−1, T = 9.3 s, Re = 3.8 × 105.

2 cm

Figure 8. A video frame illustrating the vortex tubes in side view at ωt = 105.7◦.
U0m = 43.9 cm s−1, T = 9.2 s, Re =2.8 × 105.

eventually it reverses at the phase ωt = 33◦, which agrees quite well with the analytical
solution. The flow reversal is related to the driving pressure gradient ∂p/∂x; this
pressure gradient becomes positive (i.e. the flow experiences an adverse pressure
gradient) in the deceleration period (ωt > 0◦). However, it takes ωt = 33◦ in phase for
the flow adjacent to the bed to ‘dissipate’ its momentum and also to overcome the
viscous resistance, to respond to the adverse pressure gradient. At this juncture, we
note that Liu et al. (2007, figure 11) were the first to measure the bed shear stress
in a solitary wave boundary layer. They made their measurements in a wave flume
under real, solitary waves, with Re falling into the range of laminar-flow Reynolds
numbers. (They used the PIV technique and obtained the bed shear stress by fitting a
straight line to the velocity variation very close to the bed.) Liu et al.’s results show a
very good agreement between the experimental data and their analytical prediction.

4.3. Laminar regime with vortex tubes (2 × 105 � Re < 5 × 105)

In the Reynolds number interval 2 × 105 � Re < 5 × 105, typically a strong decrease
(A, figure 5b), followed by a strong increase (B), emerges in the bed shear stress signal
(figure 5b), as discussed above. This behaviour, which is clearly different from the
pure laminar-regime flow, is related to the emergence of the vortex tubes, the coherent
structures generated as a result of the inflectional-point shear layer instability studied
in part 1 in conjunction with the oscillatory-motion boundary-layer flows. Figure 7
shows a video frame illustrating the vortex tubes in plan view (Re = 3.8 × 105).
Figure 8, on the other hand, shows another video frame for a side view of the vortex
tubes obtained in another test (Re = 2.8 × 105). See supplementary movies 1 and 2 at
journals.cambridge.org/flm.

Now, the decrease (A) in the bed shear stress signal (figure 5b) corresponds to the
situation where the bed shear-stress probe (the hot film) experiences the flow between
two successive vortices (marked A in figure 9), while the increase (B) in figure 5b
corresponds to the situation where the wall shear-stress probe experiences the next
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Figure 9. The time history of the bed shear stress in the laminar regime with vortex tubes.

vortex (marked B in figure 9) as the system of the vortex tubes is convected in the
direction of the near-bed flow. This is precisely the same mechanism as discussed
in part 1. As mentioned in part 1, these vortices are caused by the inflection-point
instability mechanism. To the authors’ knowledge, so far no study is available that
investigates this instability (from the point of view of hydrodynamic instability theory)
in the case of the boundary layer under solitary wave motion.

Four tests of the present experiments, tests 5–8, fall into the range
2 × 105 � Re < 5 × 105 where the flow regime was laminar with vortex tubes. Of
these tests, test 8 was presumably too close to the demarcation line between this
regime and the laminar-to-turbulent transition regime, and therefore not in all runs,
the bed shear stress behaved the same way as described in the preceding paragraphs,
and there was sign of turbulence in the time histories of the bed shear stress in several
cases. In the case of tests 5–7 (with Re = 2 × 105, 2.7 × 105 and 3.1 × 105), however,
all the time histories showed the same behaviour as described above. When plotted
on top of each other (not shown here for reasons of space), the bed shear stress traces
collapsed practically on a single curve meaning that, for a given Reynolds number, (i)
the vortex tubes come into existence at exactly the same phase value, (ii) they travel
with exactly the same speed, and (iii) they have exactly the same lifespan regardless
of the test.

From the data, the mean phase values for the decrease (A, figure 5b) and that for
the increase (B, figure 5b) are as follows:

Re ωt (A in figure 5b) ωt (B in figure 5b)
2.0 × 105 76◦ 94.5◦

2.7 × 105 77◦ 100◦

3.1 × 105 74◦ 90.5◦

As seen, there is a slight increase in the phase values for Re = 2.7 × 105. No clear
explanation has been found for this behaviour.
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Figure 10. Four sample time histories of bed shear stress in the laminar-to-turbulent
transition regime.

4.4. Laminar-to-turbulent transition and the transitional regime (5 × 105 < Re < ?)

With a further increase in the Reynolds number, for Re larger than 5 × 105 up to
2 × 106 (the highest Reynolds number achieved in the present experiments), the bed
shear stress experiences single or multiple or, sometimes, quite dense spikes, produced
by the passage of turbulent spots over the measuring point (figure 5c), first emerging
towards the end of the flow period, and gradually spreading to earlier phase of the
motion with increasing Re, in the same way as in the case of the oscillatory-motion
boundary-layer flows (part 1).

Figure 10 displays four sample traces for the measured bed shear stress, each
corresponding to a different Reynolds number. Figure 10 shows that the bed shear
stress experiences spikes, sometimes very dense, similar to the case of the oscillatory-
motion boundary-layer flow studied in part 1. These spikes are caused by turbulent
spots, as detailed in part 1. For example, in figure 10(a), the flow at the bed reverses
at around ωt = 25◦. However, it then experiences a very strong spike (marked S1)
starting at ωt = 55◦, indicating that a turbulent spot (forming upstream of the hot
film and travelling in the positive direction) hits the hot film, presumably changing
the flow direction again at the bed. This is followed by a second, smaller spike
(marked S2), indicating that a second turbulent spot is passing overhead. It may
be noted that there is a striking resemblance between the present bed shear stress
history in figure 10(a) and that given in figure 2 of Vittori & Blondeaux (2008b) of the
longitudinal velocity component, u1, near the bed in the turbulent flow regime, with u1

experiencing positive and negative spikes in the same manner as in figure 10(a). Figure
11 shows a video frame illustrating turbulent spots in plan view. See supplementary
movie 3.
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5 cm

Figure 11. Video frame illustrating turbulent spots in plan view at ωt = 26.5◦.
U0m = 93.9 cm s−1, T = 7.8 s, Re = 1.1 × 106.
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Figure 12. Time variation of the mean bed shear stress and that of the r.m.s. value of the
fluctuations in the bed shear stress with increasing Reynolds number.

Similar to the oscillatory-motion boundary layers (part 1), the present plan-view flow
visualization showed that turbulent spots and vortex tubes may occur concurrently.
Video frames illustrating this will not be given here for reasons of space.

Figure 12 displays the phase variation of the mean bed shear stress (figure 12, left)
and that of the r.m.s. value of the fluctuations in the bed shear stress (figure 12, right)
for various Reynolds numbers. The r.m.s. values are not normalized to illustrate the



220 B. M. Sumer et al.

growth of the turbulence as the Reynolds number is increased. It is remarkable how
the mean and the r.m.s. profiles change shape as one proceeds through the Re range.
(In connection with the statistics presented in figure 12, we note that the position of
the turbulent spots relative to the measurement point is random (see part 1, figure 17
and the related text), and therefore the above statistics also implies a spatial spanwise
mean on the spots.)

An interesting observation is that although several of the time histories obtained for
Re = 4.4 × 105 exhibited the same kind of variation as in figure 5(b), when ensemble
averaged, the local crests and troughs observed in these time history records are
smoothed out, and therefore the variation in figure 12(c) looks like the laminar
profile as in figure 12(a). However, the variation from one time history to another for
this Reynolds number manifests itself in the form of turbulence in the r.m.s. profile
in figure 12(c) (marked with a vertical arrow). Another observation is that, for the
higher Reynolds-number regimes (figure 12d–f ) the spikes observed in the individual
time histories of the bed shear stress (figure 10) also are smoothed out when the
individual records are ensemble averaged. Note also that the maximum value of the
mean bed shear stress in the turbulent regime with Re =2 × 106 (figure 12f, left) is
not the one associated with the maximum value of the free-stream velocity, but rather
the value associated with turbulent spots.

It is seen from figure 12 (right) that the occurrence of turbulence in the bed shear
stress spreads towards the lower values of phase ωt , as Re is increased (figure 12, right,
as we proceed from d to f ). This is in good agreement with the results of Vittori &
Blondeaux’s (2008b, figure 3) numerical simulations where the latter authors plotted
the turbulence energy, K , as a function of phase for various values of their non-
dimensional parameter ε( = H/h), where H is the wave height and h the water depth.
Their results show that K spreads towards earlier phase values as ε (or alternatively
Re) increases.

As noted earlier, although not captured in the present study, turbulence is expected
to spread towards even lower values of ωt as Re is increased further, eventually
covering the entire phase range. Unfortunately, this higher Reynolds number regime
could not be captured in the present study due to the finite stroke length of the
piston of the pneumatic system (as pointed out earlier) to test this argument. One
may note, however, that, in the case of the oscillatory boundary layers, the role
of the turbulence left from the previous half-cycle is such that it will promote
transition (trigger turbulence) in the boundary layer, as demonstrated experimentally
by Fredsøe et al. (2003) and by DNSs of Costamagna, Vittori & Blondeaux (2003).
Clearly, this ‘background’ turbulence does not exist in the case of the solitary motion,
and therefore transition to turbulence in the acceleration stage will be triggered by the
regular boundary-layer instability mechanism. Considering the very strong favourable
pressure-gradient environment in the acceleration stage, the inception of turbulence
in solitary wave boundary layers for earlier phases may differ quantitatively from that
in oscillatory boundary layers.

In figure 13, the maximum value of the r.m.s. value of the fluctuating bed shear
stress is plotted as a function of Re. As seen, turbulence grows explosively after Re

reaches Re � 5 × 105. The time histories of the bed shear stress in combination with
the flow visualization tests indicate that this transition is related to the inception of
turbulent spots.

Vittori & Blondeaux (2008b, figure 6) plotted their DNS results regarding the
transition to turbulence in terms of two non-dimensional parameters, namely H/h

and δV B/h. Their data were recast (using the small-amplitude solitary wave theory;
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Figure 14. Transition to turbulence on the (Recr , h/δ1) plane. Recr is expected to increase
with decreasing h/δ1 for small values of h/δ1.

(14) and (17)) and are plotted together with the present result on the plane (Re, h/δ1)
in figure 14 where h, the water depth, is taken as the half-height of the tunnel of the
present experiment, and δ1 is the Stokes length; (8). The present data and Vittori &
Blondeaux’s (2008b) numerical data seem to be in good agreement. It may be noted
that Recr is expected to increase with decreasing values of h/δ1 for small h/δ1, similar
to oscillatory boundary layers (e.g. Lodahl et al. 1998, figure 3, and Tuzi & Blondeaux
2008, figure 24).

It appears that there is a substantial delay in the laminar-to-turbulent transition
in terms of the Reynolds number in the present case (c.f. Recr � 5 × 105 of the
present case and Recr = 1.5 × 105 of the oscillatory-boundary-layer case, see part 1).
This is mainly because the adverse pressure gradient towards the end of the motion,
a key factor in the transition, is more gentle in the present case than in the case of
oscillatory motion.
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5. Flow resistance
The wave friction coefficient (first introduced by Lundgren & Jonsson 1961) is a key

quantity in the analysis of oscillatory wave boundary layers. Drawing an analogy to
oscillatory wave boundary layers, two friction coefficients can be defined for solitary-
wave boundary layers: (i) Friction coefficient associated with the maximum bed shear
stress in the acceleration stage where the near-bed flow is in the forward direction
(figure 15a):

ff =
2τ 0f

ρU 2
0m

(9)

and (ii) that associated with the maximum bed shear stress in the deceleration stage
where the near-bed flow is in the reverse direction (figure 15b):

fr =
2 |τ 0r |
ρU 2

0m

. (10)
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The flow-resistance data obtained from the present experiments related to both ff

and fr are plotted in figure 15 together with Liu et al.’s (2007) laminar solution (the
solid lines). Jensen et al.’s (1989) oscillatory-flow data also are plotted in the latter
figures as a reference line (the dashed lines). These friction-coefficient diagrams are
accompanied with the phase diagrams in figure 16, where Φf is the phase lead of the
maximum bed shear stress in the acceleration stage over the maximum free-stream
velocity, and Φr is the phase difference between the maximum free-stream velocity
and the maximum bed shear stress associated with the reverse flow in the deceleration
stage. The latter figure also includes Liu et al.’s (2007) laminar solutions for Φf and
Φr (the solid lines).

From figure 15(a), it is seen that the agreement between the experiments and Liu
et al.’s laminar solution is very good, even for values of the Reynolds number up
to Re = 1.3 × 106, a Reynolds number well beyond Recr � 5 × 105. This is because,
even for such large Reynolds numbers (Re = 6.5 × 105, 1.1 × 106 and 1.3 × 106), the
flow remains in the laminar regime for the phase value where the shear stress attains
its maximum value (c.f. figure 12d,e), and therefore the maximum bed shear stress
(and therefore ff ) behaves like in the case of the laminar flow, revealing the observed
agreement.

The present friction coefficient data in figure 15(a) are quite close to those of
Jensen et al.’s (1989) oscillatory flow data, and this is for Re up to Re = 1.5 × 105,
the critical Reynolds number for the oscillatory-motion boundary layer, because the
solitary-motion boundary-layer flow and the oscillatory-motion boundary-layer flow
are quite similar for ωt up to the point where the near-bed flow reverses, and therefore
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the corresponding friction coefficients appear to be quite close to each other until the
point of turbulent transition for the oscillatory-motion boundary layer is reached.

Regarding the friction coefficient for the reversed flow (figure 15b), the present
data corresponding to the laminar regime (points 1–3) agree fairly well with laminar
solution of Liu et al. (2007). For the three other data points in the laminar regime
Re < 5 × 105 (points 4–6), the friction coefficient is predicted to be relatively larger.
This is because of the presence of the dips (B in figure 5b) in the bed shear stress traces,
which is induced by the vortex tubes as described in the preceding paragraphs. For
higher Re numbers (Re > 5 × 105, the transitional regime), points 7–10 in figure 15(b),
the experimental data differ from the laminar solution, as expected. Note that the
data for the two highest Re numbers (Re = 1.6 × 106 and 2 × 106) of the present
experiments are not included in the diagram on grounds that the maximum value of
|τ 0r | could not be captured in the mean bed shear stress variations (see e.g. figure 12f,
left).

Figure 16(a) shows that the present phase data, Φf , in the laminar regime are
in fairly good agreement with the laminar solution of Liu et al. (2007) although
there is a tendency that the experimental values are, in general, slightly larger than
the prediction of the laminar theory. Regarding the two data points corresponding
to the two highest Reynolds numbers in figure 16(a), the phase becomes almost
zero for Re = 1.6 × 106, and even negative for Re = 2 × 106. This is because of the
turbulence, as seen clearly from e.g. figure 12(f, left). Although not captured in the
present experiments due to the experimental constraint (the finite stroke length of
the piston), Φf is expected to ‘recover’ again with a further increase in Re as the
turbulence spreads further towards the smaller values of ωt in the fully developed
turbulent regime, and it is expected to settle at a positive value, albeit smaller than
ωt =20◦ (the laminar-regime phase lead), similar to the behaviour of the phase lead
observed in the case of the oscillatory flow (see e.g. Jensen et al. 1989; figure 11b).

As for Φr (figure 16b), the agreement between the experiment and Liu et al.’s
laminar solution is very good in the laminar-regime Reynolds number range for the
first three data points. However, Φr data for the next three points in the laminar regime
deviate from Liu et al.’s laminar solution because these data points correspond to the
laminar regime with vortex tubes (Re =2 × 105, Re = 2.7 × 105 and Re = 3.1 × 105).
For the transitional Reynolds number range (Re > 5 × 105), figure 16(b) shows that Φr

decreases with respect to the values experienced in the laminar regime. This is because
of the introduction of turbulence via the appearance of turbulent spots at the phase
values where the maximum bed shear stress in the deceleration stage is experienced.
However, as the Reynolds number is increased further, Φr is expected to pick up
values larger than those experienced in the laminar and transitional regimes exhibited
in figure 16(b) simply because the flow reversal in this case will be delayed due to
turbulence, resulting in values of Φr larger than the laminar and transitional ones.
Similar to figure 15(b), the Φr data for the two highest Re numbers (Re =1.6 × 106

and 2 × 106) of the experiment are not included in figure 16(b) on grounds that the
maximum value of |τ 0r | could not be captured in the experiments.

Finally, figure 17 displays the phase data regarding the phase at which the flow
reversal takes place at the bed, Φc. Again the experiment and the laminar solution
are in very good agreement. The boundary layer reverses in the laminar regime
until Re reaches the value Re = 1.3 × 106 because only after this Reynolds number
the turbulence on average will reach the phase where the flow reversal takes place
(figures 12e) although transition to turbulence occurs much earlier, i.e. at a much
lower Reynolds number, Re = 5 × 105. Once turbulence reaches that point, the reversal
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will occur in the turbulent regime, and this will delay the flow reversal, revealing the
higher values of Φc around 80◦, observed for the two highest Reynolds numbers in
the tests (figure 17). The flow reversal at the bed delays quite considerably in the case
of the turbulent regime, similar to oscillatory-flow boundary-layer flows (part 1); this
is related to the continuous supply of momentum-rich fluid from the outer flow as
discussed in part 1.

6. Velocity profiles
Figure 18 displays the phase evolution of the mean velocity profiles at three different

Reynolds numbers, Re = 7.1 × 104, Re =4.8 × 105 and Re = 1.8 × 106, the first being
in the laminar regime, the second at the onset of turbulent transition and the third
in the transitional regime. Figure 18 also includes Liu et al.’s (2007) laminar solution
for the phase values ωt = −100◦, −40◦, 100◦ and 40◦ (figure 18a). We note that the
agreement between the present laminar velocity profiles and Liu et al.’s (2007) laminar
solution is fairly good. From figure 18, it is clearly seen that the flow reversal occurs
at larger and larger ωt values with the distance from the bed, similar to oscillatory
boundary layers (e.g. Jensen et al. 1989). It is also seen that the flow reversal across
the depth is, as expected, delayed quite substantially when Re is increased from
Re =4.8 × 105 to 1.8 × 106, in agreement with the bed shear stress measurements (see
figure 17; see also the discussion in conjunction with the delay in the flow reversal
due to turbulence in the preceding paragraphs and in part 1).

Figure 19 presents the phase evolution of the mean velocity profiles in semi-
logarithmic plot for Re = 1.8 × 106. The velocity and the vertical distance from the
bed are normalized in terms of the inner-flow parameters, Uf ( =

√
τ 0/ρ), the phase-

resolved mean friction velocity, and ν, the kinematic viscosity:

y+ =
yUf (ωt)

ν
and u+(y, ωt) =

u(y, ωt)

Uf (ωt)
. (11)

In figure 19, we also plot the van Driest velocity profile (van Driest 1956)

u+ = 2

∫ y+

0

dy+

1 +

{
1 + 4�2y+2

[
1 − exp

(
− y+

Ad

)]2
}1/2

(12)

as a reference line. Here � is the von Kármán constant ( = 0.4), and Ad is the van
Driest damping factor (= 25). Note that the van Driest profile (u+ in (12)) tends to
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the logarithmic distribution u+ = (1/�) ln y+ + 5 for large values of y+ (the dashed
lines in figure 19).

The y+ interval over which the measured velocity profile comes closest to the
logarithmic distribution is marked a, b and c (over the phase interval ωt � 30◦–
60◦) in figure 19. Although the behaviour of the measured velocity distribution as a
function of phase is qualitatively quite similar to that of oscillatory boundary-layer
flows (discussed in greater details by Sumer, Jensen & Fredsøe 1987, and Jensen
et al. 1989, p. 279 and figure 17), the agreement between the velocity data and the
logarithmic distribution over the phase interval ωt � 30◦–60◦ is not very good. This
may be attributed to the fact that the boundary layer in the experiment (test 14,
Re =1.8 × 106) is not in the fully developed turbulent regime.

Figure 20(a–c) illustrates the time development of the turbulence in terms of the
r.m.s. value of the fluctuating component of u, normalized by the phase-resolved
mean bed shear stress velocity, as a function of the distance y+. This is for the
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experiment where Re = 1.8 × 106. Clearly, no turbulence has yet been generated at
ωt = −30◦ (or before). However, by the time the phase reaches the value ωt = 30◦, a
substantial amount of turbulence has been produced, and this turbulence has spread
across the depth (up to large values of y+). As this Reynolds number (Re = 1.8 × 106)
is still in the transitional regime, the turbulence profiles given in this figure cannot
represent those in the fully developed turbulent regime simply because both the r.m.s.
value of u′ and the bed shear stress velocity Uf have not yet attained their fully
developed regime values. Therefore, no direct comparison can be made between the
measured distributions in figure 20 and the corresponding steady boundary-layer (e.g.
Monin & Yaglom 1973) and the oscillatory boundary-layer distributions (e.g. Jensen

et al. 1989). Nevertheless, it may be noted that the measured distribution of
√

u′2/Uf

attains a maximum value at y+ = 20–25 (figure 20b,c), in agreement with the steady

and oscillatory boundary-layer results. However, the present values of
√

u′2/Uf are
generally a factor of 2 larger than those of the steady and oscillatory boundary layers.

7. Remarks on practical applications
For a small-amplitude solitary water wave, the surface elevation and the horizontal

particle velocity are, respectively, given as

η = H sech2(ωt), (13)

U0 = U0msech2(ωt), (14)

in which U0m and ω are

U0m =
√

gh
H

h
, (15)

ω =

√
3

4
gH

1

h
, (16)

in which H is the wave height and h is the water depth. Similar to (2), a period can
be defined by

T =
2π

ω
= 2π

√
4

3gH
h, (17)

where T can be interpreted as a time scale that characterizes the width of the
free-stream velocity time series as in figure 1(a).

The boundary layer developing over a smooth bed under a solitary wave where
the half-space approximation is valid (y > 0; see § 4.1) is described by a single non-
dimensional quantity, namely the Reynolds number, defined by (7) in which U0m is
given by (15) and a by (6), (16) and (17).

In the case when T is large, so large that the boundary-layer thickness becomes
comparable to the water depth, the parameter water-depth-to-boundary-layer-
thickness ratio should also be involved, as pointed out above. This case normally
involves turbulent-regime boundary-layer flows (not only in the field but also, to a
large extent, in the laboratory). The boundary-layer thickness, δt , in this case may be
estimated as follows. Note that δt corresponding to T may be written as

δt = O(
√

2νtT ), (18)
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in which νt is the turbulent diffusion coefficient and may, to a first approximation, be
taken as

νt = O
(�

6
δtUf m

)
, (19)

in which � is the von Kármán constant (� 0.4), and Ufm is the maximum value of the
friction velocity.

(Equation (19) is obtained by integrating the turbulent diffusion coefficient over the

boundary-layer thickness, νt =
1
δt

∫ δt

0
ε(y) dy, with ε(y) obtained from the Reynolds

analogy (i.e. the transfer of momentum and mass is analogous, e.g. Sayre 1968, p. 11)
as ε(y) = κUfmy(1 − (y/δt )).)

Now, solving the boundary-layer thickness from (18) and (19), δt is

δt = O(0.1Uf mT ). (20)

In the present experiments, the largest boundary-layer thickness was, from the
preceding equation, δt = O(0.1UfmT ) = O(0.1 × 2.8 cm s−1 × 8.5 s) =O(2.4 cm) in test
15 corresponding to the highest Reynolds number, and hence h/δt = O(14.5 cm/

2.4 cm) = O(6) where h is taken as h = 29/2 = 14.5 cm, the half-height of the tunnel
(figure 1 in part 1). It may be noted that the above estimate of the boundary-
layer thickness agrees quite well with that found from the measured velocity profiles
(figure 18).

So, the ratio h/δt in test 15 was like O(6), large enough for the parameter h/δt

not to be very significant. (h/δt was even larger in the other tests.) Therefore, the
results of the present study are directly applicable to boundary layers developing
under a solitary wave provided that the wave period is not very large so that the
water-depth-to-boundary-layer-thickness ratio remains sufficiently large. Otherwise,
the boundary-layer properties should be dependent not only on Re but also on the
water-depth-to-boundary-layer-thickness ratio.

The present tests cover the smooth-bed case. In the case of a rough bed, there will
be a third parameter, a/ks , in which ks is Nikuradse’s equivalent sand roughness. For
the present results to be applicable for the rough-bed case, the bed should act as
a hydraulically smooth boundary, i.e. ksUfm/ν should be sufficiently small, certainly
smaller than O(10). Note that so far no data are available for solitary motion/wave
boundary layers over rough beds.

8. Conclusions
(a) The experiments show that the critical value of the Reynolds number for

transition to turbulence is Recr = 5 × 105.
(b) In a narrow sub-range of Re number (2 × 105 < Re < 5 × 105) in the laminar

regime, a regular array of vortices appear near the bed as a result of the inflectional-
point shear layer instability.

(c) The transition to turbulence at Recr = 5 × 105 is associated with the appearance
of turbulent spots, similar to oscillatory-motion boundary-layer flows. The passage of
turbulent spots is marked in the bed shear stress by single, or multiple, or sometimes
quite dense spikes. With these spikes, the instantaneous value of the bed shear
stress is increased tremendously. Clearly, this has important implications for sediment
transport.

(d) Flow resistance in terms of wave friction coefficient including the phase
information has been worked out for both the acceleration and deceleration stages of
the solitary motion (figures 15 and 16).
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(e) The near-bed flow reverses during the deceleration stage of the free stream, a
result similar to that in oscillatory-motion boundary-layer flows. The flow reversal
occurs at smaller and smaller ωt values as one moves towards the bed.

(f) The flow reversal is delayed quite substantially with increasing Re.

This study has been partially funded by (i) the Danish Research Council for
Technology and Production Sciences (FTP) under the research program Exploitation
and Protection of Coastal Zones (EPCOAST), and (ii) the Danish Council for Strategic
Research through the research programme ‘Seabed and Wind Farm Interaction’.
P.L.F.L. acknowledges the support from NSF and ONR through grants to Cornell
University. Comments of Professor Giovanna Vittori and other two anonymous
referees are also appreciated.

Supplementary movies available at journals.cambridge.org/flm.

REFERENCES

Carstensen, S., Sumer, B. M. & Fredsøe, J. 2010 Coherent structures in wave boundary layers.
Part 1. Oscillatory motion. J. Fluid Mech. 646, 169–206.

Costamagna, P., Vittori, G. & Blondeaux, P. 2003 Coherent structures in oscillatory boundary
layers. J. Fluid Mech. 474, 1–33.

Fredsøe, J. & Deigaard, R. 1992 Mechanics of Coastal Sediment Transport. World Scientific.

Fredsøe, J., Sumer, B. M., Kozakiewicz, A., Chua, L. H. C. & Deigaard, R. 2003 Effect of
externally generated turbulence on wave boundary layer. Coastal Engng 49, 155–183.

Jensen, B. L., Sumer, B. M. & Fredsøe, J. 1989 Turbulent oscillatory boundary layers at high
Reynolds numbers. J. Fluid Mech. 206, 265–297.

Keulegan, G. H. 1948 Gradual damping of solitary wave. J. Res. Natl. Bur. Stand. 40, 607–614.

Liu, P. L.-F. 2006 Turbulent boundary-layer effects on transient wave propagation in shallow water.
Proc. Roy. Soc. A 462, 3431–3491.

Liu, P. L.-F. & Orfila, A. 2004 Viscous effects on transient long-wave propagation. J. Fluid Mech.
520, 83–92.

Liu, P .L.-F., Park, Y. S. & Cowen, E. A. 2007 Boundary layer flow and bed shear stress under a
solitary wave. J. Fluid Mech. 574, 449–463.

Lodahl, C., Sumer, B. M. & Fredsøe, J. 1998 Turbulent combined oscillatory flow and current in
a pipe. J. Fluid Mech. 373, 313–348.

Lundgren, H. & Jonsson, I. G. 1961 Bed shear stress induced by a wave motion. Coastal
Engineering Laboratory, Technical University of Denmark, Basic Research – Progress Report
1, pp. 3–5.

Mei, C. C. 1983 The Applied Dynamics of Ocean Surface Waves. John Wiley & Sons.

Monin, A. S. & Yaglom, A. M. 1973 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 1.
MIT Press.

Sayre, W. W. 1968 Dispersion of mass in open-channel flow. Hydraulics papers, no. 3, Colorado
State University, Fort Collins. (The material contained in this publication is identical to
the dissertation of the same title submitted in March 1967 to Colorado State University
in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Civil
Engineering.)

Sumer, B. M., Jensen, B. L. & Fredsøe, J. 1987 Turbulence in oscillatory boundary layers. In
Advances in Turbulence (ed. Gt. Comte-Bello & J. Mathieu), pp. 556–567. Springer.

Sumer, B. M., Jensen, P. M., Sørensen, L. B., Fredsøe, J. & Liu, P. L.-F. 2008 Turbulent
solitary wave boundary layer. In Proceedings of the 18th International Offshore (Ocean)
and Polar Engineering Conference (ISOPE), pp. 775–781. Vancouver, British Columbia,
Canada.

Tanaka, H., Sumer, B. M. & Lodahl, C. 1998 Theoretical and experimental investigation
on laminar boundary layers under cnoidal wave motion. Coastal Engng J. 40 (1), 81–
98.



Coherent structures in wave boundary layers. Part 2. Solitary motion 231

Tuzi, R. & Blondeaux, P. 2008 Intermittent turbulence in a pulsating pipe flow. J. Fluid Mech. 599,
51–79.

van Driest, E. R. 1956 On turbulent flow near a wall. J. Aeronaut. Sci. 23, 1007–1011.

Vittori, G. & Blondeaux, P. 2008a Boundary layer flow and bed shear stress under solitary wave.
In Book of Abstract of the 31st International Conference on Coastal Engineering. Hamburg,
Germany, Abstract No. 062.

Vittori, G. & Blondeaux, P. 2008b Turbulent boundary layer under a solitary wave. J. Fluid Mech.
615, 433–443.


